Oldies But Goodies: “On AI ROI: The Questions You Need To Be Asking”
A very practical, very look-behind-the-curtain talk that’s a bit irreverent to the myth of the all-magical, all-fixing, no-oversight-needing data science.
A data leader with practical side and a touch of humor. I stumbled into data science back before HBR convinced everyone they wanted one or wanted to be one. I've done years as an IC and as a leader, in the Bay Area and beyond. And despite that, I still have faith that data can revolutionize your company--if you let it.
Masters in Mathematical Statistics (UIC), Masters in Mathematical Computer Science (UIC), and the Masters in Statistics that I got along the way to get a PhD (Cornell) (but I left the PhD All-But-Dissertation to take a position as Director of Data Science). Yale BA, University of Chicago Data Science for Social Good Fellow, Second City Conservatory Graduate, and one of my two dogs has graduated puppy 101.
A very practical, very look-behind-the-curtain talk that’s a bit irreverent to the myth of the all-magical, all-fixing, no-oversight-needing data science.
A guide building a to nimble, efficient, and impactful data strategy.
A few weeks ago (January 23rd, 2021 to be precise) I had the pleasure of joining GET Cities for their inaugural Kickoff Summit! GET Cities is an incredible fellowship program building a more inclusive future for tech by fostering community and accelerating growth in underrepresented genders. If you’re looking for […]
It took a while, but I’ve got my site back! I’m excited to backfill some posts I’ve been trying to put up and I’m so grateful to be featured alongside some outstanding AI professionals! Link More content to–quickly!–come!
Most of us agree we should cross validate–and how to cut up the k-folds. Finally I’ve put down in writing why we do it and where it should actually fit into your workflow.
Why the impact hypothesis is so critical–and why we haven’t been talking about it till now.
Bite-sized bits of data science for the non-data scientist Disclaimer: All * terms to be defined at a later point. As well as many others data scientist: a role that includes basic engineering, analytics, and statistics; often builds machine learning models depending on the company, might be a product analyst, […]
If we want to capitalize on what data science can offer, stakeholders need to communicate with technical teammates in specifics, particulars, and with common understanding.
This is a true, grimace-inducing story from a past position. Names and details have been changed to protect the innocent…and everyone else involved. I’m running a model and taking a late lunch in a near empty cafeteria when my (then) boss slacks me. He wants an immediate video call. Like […]
….or How to Answer Your Own Questions This walk-thru shows how to hunt down the answer to an implementation question. The example references sklearn, github, and python. The post is intended for data scientists new to coding and anyone looking for a guide to answering their own code questions. Does […]